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Atencio CA, Sharpee TO, Schreiner CE. Receptive field dimen-
sionality increases from the auditory midbrain to cortex. J Neuro-
physiol 107: 2594–2603, 2012. First published February 8, 2012;
doi:10.1152/jn.01025.2011.—In the primary auditory cortex, spectro-
temporal receptive fields (STRFs) are composed of multiple indepen-
dent components that capture the processing of disparate stimulus
aspects by any given neuron. The origin of these multidimensional
stimulus filters in the central auditory system is unknown. To deter-
mine whether multicomponent STRFs emerge prior to the forebrain,
we recorded from single neurons in the main obligatory station of the
auditory midbrain, the inferior colliculus. By comparing results of
different spike-triggered techniques, we found that the neural re-
sponses in the inferior colliculus can be accounted for by a single
stimulus filter. This was observed for all temporal response patterns,
from strongly phasic to tonic. Our results reveal that spectrotemporal
stimulus encoding undergoes a fundamental transformation along the
auditory neuraxis, with the emergence of multidimensional receptive
fields beyond the auditory midbrain.
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FOR AUDITORY NEURONS, the spectrotemporal receptive field
(STRF) is a complete description of the stimulus preferences of
a neuron. The STRF may be approximated as a set of linear
filters, or components, that describe the spectrotemporal stim-
ulus selectivity of auditory neurons. The number of filters
represents the dimensionality of the STRF (Sharpee et al.
2004). In all layers of primary auditory cortex (AI), STRFs
have been shown to have multiple components that capture
concurrent processing of disparate stimulus aspects (Atencio et
al. 2008, 2009). In contrast, primary visual cortex granular
layers predominantly contain simple cells, which can be well
described with a single stimulus filter, while extragranular
layers are dominated by complex cells, which can only be
described with multiple filters. Since the number of filters
changes within the visual cortical hierarchy, this indicates that
multicomponent receptive fields are constructed within cortex
itself. Within AI, however, the situation is different; since
neurons in all layers of AI have STRFs with multiple compo-
nents, it is unknown whether this concurrent, multidimensional
processing emerges in AI or whether it is inherited from
subcortical stations.

The auditory forebrain comprises the cortex and the thala-
mus. The midbrain is positioned prior to the forebrain, and it is
an obligatory station (Ehret 1997). Signals proceed along the
lemniscal pathway from the midbrain, to the thalamus, and
then to cortex. Midbrain STRFs have been extensively char-

acterized with single-filter descriptions (Andoni et al. 2007;
Escabí and Schreiner 2002; Lesica and Grothe 2008; Rodri-
guez et al. 2010). It is unknown whether midbrain STRFs can
be more completely characterized by using more than one
filter.

STRFs can be conceptualized as describing the stimulus
filtering that a neuron performs. One approach to estimating
STRFs is to calculate the spike-triggered average (STA). The
STA is a single filter that may be used to describe spectrotem-
poral processing (Andoni et al. 2007; Escabí and Schreiner
2002). If the processing of the cell can be captured by one
filter, then the STA may be a sufficient descriptor (de Boer and
Kuyper 1968). If more than one filter is required, as in visual
and auditory cortex (Atencio et al. 2008; Chen et al. 2007; Rust
et al. 2005; Touryan et al. 2002), then this model is inadequate.
In the auditory midbrain, the main station is the central nucleus
of the inferior colliculus (ICC). For the ICC, a single linear
filter, in conjunction with a static nonlinearity, may be used to
describe some aspects of processing (Andoni et al. 2007;
Lesica and Grothe 2008). However, without knowing the
number of filters, or stimulus dimensions, that are required to
model midbrain function, the adequacy of the model may not
be discerned.

Here, to address these questions, we systematically examine
spectrotemporal filters in the auditory midbrain. We first ad-
dress the adequacy of the STA as a functional descriptor for
ICC STRFs. Next, we estimate the number of filters that are
needed to capture midbrain spectrotemporal processing. We
then compare the spectrotemporal processing of midbrain neu-
rons to auditory cortical neurons. This is necessary since more
than one filter is present in granular and extragranular layers of
auditory cortex, and the demonstration of the existence of
multiple filters in earlier stations would constrain the sites
of origins of this important processing principle. We conclude
by demonstrating the feasibility of spike-triggered analyses for
a continuum of ICC temporal response types, from phasic to
tonic. Our results reveal that spectrotemporal stimulus encod-
ing undergoes a fundamental transformation between midbrain
and forebrain. This transformation is reflected in the emer-
gence of multidimensional receptive fields beyond the auditory
midbrain.

METHODS

Electrophysiology. Electrophysiological methods and stimulus de-
sign were similar to previous reports (Escabí and Schreiner 2002;
Schreiner and Langner 1997). Young adult cats were given an initial
dose of ketamine (22 mg/kg) and acepromazine (0.11 mg/kg), and
anesthesia was maintained with pentobarbital sodium (Nembutal,
15–30 mg/kg) during the surgical procedure. The animal’s tempera-
ture was maintained with a thermostatic heating pad. A custom head
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holder was used to stabilize the head. Bupivacaine was applied to
incision points. Surgery consisted of a tracheotomy, reflection of the
soft tissues of the scalp, craniotomy over cortex, and durotomy. The
cortex posterior to auditory cortex, and above the ICC, was then
aspirated, which allowed for direct visualization of the ICC and later
access by a lateral-medial approach (Schreiner and Langner 1997).
The tentorium overlaying the ICC was not removed. After surgery, the
animal was maintained in an areflexive state with a continuous
infusion of ketamine-diazepam (2–10 mg·kg�1·h�1 ketamine, 0.05–
0.2 mg·kg�1·h�1 diazepam in lactated Ringer solution). All proce-
dures were in strict accordance with, and were administered under an
experimental protocol approved by, the University of California, San
Francisco Committee for Animal Research.

All recordings were made with the animal in a sound-shielded
anechoic chamber (IAC, Bronx, NY), with stimuli delivered via a
closed speaker system (diaphragms from Stax) that delivered sound
through a hollow ear bar that was inserted into the ear canal contralat-
eral to the recording site. Simultaneous extracellular recordings were
made with multichannel gold-plated silicon recording probes
(kindly provided by the University of Michigan Center for Neural
Communication Technology). The probes contained 16 linearly
spaced recording channels, with each channel separated by 0.15
mm. The impedance of each channel was 4 –5 M�. Probes were
positioned orthogonally with a microdrive (David Kopf Instru-
ments, Tujunga, CA).

Neural traces were band-pass filtered between 600 and 6,000 Hz
and were recorded to disk with a Neuralynx Cheetah A/D system at
sampling rates between 18 and 27 kHz. The traces were sorted off-line
for single units with a Bayesian spike-sorting algorithm (Lewicki
1994).

After spike sorting and analysis, neurons were determined to be in
the central nucleus of the ICC by analyzing responses to pure tones
and ripple stimuli (Merzenich and Reid 1974; Schreiner and Langner
1997). The ICC was identified with physiological criteria: As record-
ing depth increased, there was an accompanying increase in charac-
teristic frequency with pure tones and in best frequency with STRFs
(see below for analysis procedures).

Stimulus. For any recording position, neurons were probed with
pure tones and then with a 20-min dynamic moving ripple (DMR)
stimulus. Pure tones were 50 ms in duration, had 5 ms cosine-squared
onset/offset ramps, and were presented every 300 ms. The frequency
and level of each tone were chosen from 45 frequencies and 15 levels,
resulting in a set of 675 different tones. The set was presented in
pseudorandom sequence (Schreiner and Sutter 1992). Level steps
were 5 dB and covered a range of 70 dB. Frequencies were logarith-
mically spaced and encompassed the frequency preferences of en-
countered neurons. For the DMR stimulus, the maximum spectral
modulation frequency was 4 cyc/oct, and the maximum temporal
modulation frequency was 500 cyc/s (Escabí and Schreiner 2002).
Maximum modulation depth of the spectrotemporal envelope was 40
dB. Mean intensity was set at 30–50 dB above the mean pure-tone
threshold.

Analysis. Data analysis was carried out in MATLAB (MathWorks,
Natick, MA). We used the reverse correlation method to derive the
average spectrotemporal stimulus envelope preceding a spike (STA)
(Aertsen and Johannesma 1981; deCharms et al. 1998; Escabí and
Schreiner 2002).

To obtain the maximally informative dimensions (MIDs), we
followed previously reported methodologies (Sharpee et al. 2004,
2006). To find relevant stimulus dimensions, we searched through the
stimulus space for those dimensions that maximized the mutual
information between the stimulus and the spiking response. The first
MID (MID1) is the direction in stimulus space that maximizes the
mutual information between the stimulus and the response. The
second MID (MID2) was then found as the dimension in the stimulus
space that, together with the first MID, further maximized the infor-

mation. The mutual information between projections onto individual
filters, v, and single spikes was computed according to

I(v) � � dxPv(x | spike)log2�Pv�x�spike�
Pv�x� �

where x represents projections onto the relevant dimension, v. Pv(x) is
the distribution of projections for all presented stimuli. Pv(x | spike)
is the distribution of projections for only those stimuli that led to a
spike. The filter v was either MID1 or MID2. The one-dimensional
input/output nonlinearity was calculated via

Pv(spike | x) � P(spike)
Pv�x�spike�

Pv�x�
where P(spike) is the average firing rate of the neuron.

The mutual information between single spikes and both MIDs was
calculated as

I(MID1, MID2) � � � dx1dx2P(x1, x2 | spike)log2�P(x1, x2 | spike)

P(x1, x2) �
where x1 and x2 represent the projections of the stimulus onto the first
and second MIDs, respectively. The two-dimensional nonlinearity
was calculated via

P(spike | x1, x2) � P(spike)
P(x1, x2 | spike)

P(x1, x2)

All estimates of relevant stimulus dimensions (STA, MID1, MID2)
were computed as an average of four jackknife estimates. Each
jackknife estimate was computed by using a different ¾ of the data
(the training data set), and thus leaving a different ¼ of the data as a
test data set. Information values were calculated using different
fractions of the test data set for each neuron. To accomplish this, the
information values were calculated over the first 80%, 90%, 92.5%,
95%, 97.5%, and 100% of the test data set. The information calculated
from these data fractions was plotted against the inverse of the data
fraction percentage (1/80, 1/90, etc.). We extrapolated the information
values to infinite data set size by fitting a line to the plot and taking the
y-axis intersect as the information value for unlimited data size
(Brenner et al. 2000; Strong et al. 1998; Treves and Panzeri 1995).

From the STA and MID1, we obtained the latency, best frequency
(BF), bandwidth (BW), and spectral tuning. To obtain the parameters,
the filter was summed across time or frequency, which produced the
frequency or time marginals, respectively. The time or frequency axis
for each marginal was then upsampled 500 times (using MATLAB
function linspace.m), and the marginals were interpolated (using
MATLAB function interp1.m with “spline” option). Latency was
defined as the peak in the time marginal. BF was defined as the peak
in the frequency marginal, and BW was the width of the distribution
at 25% of the peak height. Spectral tuning, defined as the quality
factor Q, was calculated from the BF and BW via Q � BW/BF.

The similarity between filters was calculated with the Pearson
correlation coefficient, r, defined as

r �
�

i
�

j
A(i, j)B(i, j)

��
i

�
j

A(i, j)A(i, j)��
i

�
j

B(i, j)B(i, j)

where A and B are matrices and may be either the STA or MID1. The
similarity ranges between �1 and �1 and is a measure of the
spectrotemporal correlation between the two filters.

The temporal evolution of pure-tone responses was evaluated with
the phasic-tonic index (PTI):

PTI � NE ⁄ (NB � NE) � NE ⁄ NT

where NB is the number of spikes during the first half of the stimulus,
NE is the number of spikes during the last half of the stimulus, and NT
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is the sum of NB and NE. For purely phasic neurons the PTI is 0, while
for tonic responses the PTI is �0.5. The PTI includes data from all
pure-tone presentations; thus it may include responses that are phasic
at low sound levels or at the edge of a neuron’s frequency response
area. In this manner, the PTI is a conservative measure.

The MID1 contribution was defined as 100·I(MID1)/I(MID1,
MID2). The STA and MID1 were compared using the STA suffi-
ciency metric, defined as 100·I(STA)/I(MID1). For both measures we
used the information values from the extrapolation procedure.

We also followed previous work and computed a response preci-
sion index (RPI) for each neuron using the relation RPI � [max(STA) �

min(STA)]/fr�8, where max(STA) and min(STA) are the maximum
and minimum values in the STA and fr is the average firing rate
(Escabí and Schreiner 2002). The RPI measures the temporal preci-
sion of a neuron by comparing the difference between the maximum
and minimum in the estimated STA to the expected theoretical dif-
ference for stimuli that are perfectly aligned (Escabí and Schreiner
2002). The RPI ranges from 0 (not temporally precise) to 1 (tempo-
rally precise).

RESULTS

The ICC is an obligatory computational hub in the central
auditory system (Aitkin 1986; Ehret 1997). Information
from brain stem nuclei, such as the superior olivary complex
and cochlear nucleus, converges onto the ICC (Oliver 2005;
Schofield 2005). The projections to the ICC are localized
into specific topographic domains (Malmierca et al. 2005;
Oliver 2000; Oliver et al. 1995; Schofield 2005). Although
our knowledge of these projection patterns is extensive, our
understanding of ICC spectrotemporal processing is less
comprehensive.

Our goal in this study was to estimate ICC STRFs. To
characterize ICC neurons, we used two types of stimuli: pure
tones and a dynamic, broadband sound. In the ICC, the tem-
poral response pattern to pure tones fell along a gradient, from
tonic to phasic. For tonic responses, vigorous discharges oc-
curred throughout the stimulus duration (Fig. 1).

The responses can be more fully appreciated with the post-
stimulus time histogram (PSTH). The PSTH was estimated by
including responses to every pure-tone frequency-intensity
combination. For predominantly tonic cells, the response du-
ration was tightly locked to the pure-tone duration (Fig. 1;
pure-tone duration of 50 ms indicated by gray boxes). Addi-
tionally, tonic neurons often had few discharges after 150 ms,
which is 100 ms after tone offset, further indicating effective
stimulus entrainment (Fig. 1, A and B).

Tonic responding neurons responded vigorously to the
DMR. Although the DMR has no well-defined onset, tonic
neurons exhibited high discharge rates in response to this
continuous stimulus. Spike rates in response to the DMR
often exceeded 20 spikes/s [median � 12.5, median absolute
deviation (m.a.d.) � 9.4]. Despite these high rates, we were
able to obtain the STA from DMRs for tonic responding
neurons (Fig. 1).

A wide variety of temporal responses were found in the
midbrain. Responses could be highly tonic with little back-
ground activity (Fig. 1, A–C); they could be tonic with much
background activity (Fig. 1, D and E); in some cases they were
onset with a sustained component (Fig. 1F); and in other cases
responses were highly phasic (Fig. 1G). In all cases, we were
able to estimate well-defined STAs (Fig. 1). Thus the phasic-

tonic nature of the responses had no bearing on our ability to
utilize spike-triggered averaging techniques.

The temporal response type of a neuron was not directly
related to the structure of the STA. For tonic responses, diverse
STA patterns were observed: excitation present without inhi-
bition (Fig. 1A; excitation: red subfields; inhibition: blue sub-
fields); excitation followed by inhibition (Fig. 1D); excitation
flanked by inhibition in time and frequency (Fig. 1E); or
excitation accompanied by strong spectral sidebands (Fig. 1F).
Phasic neurons similarly exhibited temporal and spectral in-
hibitory sidebands (Fig. 1G). The overall impact of temporal
response profiles on STRFs is quantified further below.

Single-dimensional STRFs. The receptive field estimated by
the STA represents a single feature dimension in the spectro-
temporal stimulus space. The STA captures the average stim-
ulus feature that accounts for a neuron’s response. Another
approach that may be used to obtain the STRF is MID analysis.
In this framework, an STRF, or linear filter, is estimated by
maximizing the mutual information between the stimulus and
the spiking response (Atencio et al. 2008, 2009; Sharpee et al.
2004). The filter is calculated by an iterative process, and the
result is the stimulus feature that best describes the acoustic
pattern that drives the neuron. The resulting filter, which
accounts for the most mutual information, is the first MID
(MID1). MID1 is an unbiased estimate since the iteration
process removes the effects of stimulus correlations, which can
confound STRF estimates when the stimulus ensemble con-
tains higher-order correlations (Sharpee et al. 2004). For every
neuron with an STA we were also able to calculate an MID1
(Fig. 2C). The STAs and MID1s were very similar, indicating
that both approaches are adequate descriptors of a linear,
single-dimensional STRF (Fig. 2, A and C).

The MID analysis may be expanded so that we can estimate
the potential contributions of a second, independent filter,
MID2. The presence of an MID2 further maximized the mutual
information between the stimulus and the response (Fig. 2E).
MID2s in the ICC, however, hardly increased the total infor-
mation captured by the combined application of the MIDs and
seldom revealed structured excitatory or inhibitory subfields
(see below).

STA and MID1 example nonlinearities. For each spectro-
temporal filter, a nonlinear function may be calculated that
describes the firing rate of the neuron as a function of the
similarity between the stimulus and the filter. This static,
time-independent function is termed a nonlinearity. This non-
linearity represents a rule that describes how the neuron will
respond, given the similarity between the stimulus and the
filter. STA (Fig. 2B) and MID1 (Fig. 2D) nonlinearities were
similar, with each having an asymmetric structure. Thus, when
the stimulus is negatively correlated with the filter, the re-
sponse of the neuron decreases below the mean driven firing
rate (Fig. 2; dashed lines indicate mean rate). As the simi-
larity increases, the response strength of the neuron in-
creases. For some nonlinearities, the response rate plateaus
(Fig. 2, 3rd row), although for most the response is highly
monotonic. MID2 nonlinearities were less stereotyped in
structure, and often did not deviate from the mean driven
response rate (Fig. 2F).

To estimate how well the STA approximates MID1, the STA
and MID1 filters and nonlinearities may be compared. We first
compared basic parameters from each filter. The response
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latency was highly similar for the STA and MID1 (Fig. 3A; r �
0.995, P � 0.001, t-test). BF was even more highly correlated
(Fig. 3B; r � 0.999, P � 0.001, t-test). Additionally, the BW
of each filter was matched (Fig. 3C; r � 0.982, P � 0.001,
t-test). Finally, the spectral tuning of each filter, defined as the
quality factor Q (� BW/BF), was also significantly correlated
across STA and MID1 filters (Fig. 3D; r � 0.975, P � 0.001,
t-test).

For the STA and MID1, we also compared the global structure
of the filters and nonlinearities. The correlation between the filter
structure was never below 0.8 (Fig. 3E; median � 0.948, m.a.d. �
0.016), further indicating a strong agreement between MID1 and
the STA. The correlation between the nonlinearities was also high

(Fig. 3F; median � 0.905, m.a.d. � 0.087), implying that the STA
is a sufficient approximation to MID1.

The performance of the STA and the MIDs may be esti-
mated by calculating the mutual information. We measured the
performance in the midbrain and then compared this to the
performance in AI, using previously published data (Atencio et
al. 2008). We used mutual information because it is an objec-
tive measure of the stimulus-response relationship that has
been used extensively to evaluate neural processing. For mid-
brain neurons, the information provided by MID1 was highly
similar to that provided by the STA, indicating that the per-
formance of each STRF model was nearly indistinguishable
(Fig. 4A; P � 0.481, rank sum test). By contrast, for cortical

Fig. 1. Response patterns and spike-triggered av-
erages (STAs) for midbrain neurons. Each row
(A–G) represents 1 neuron. Left: spike raster for
pure tones. Raster responses are shown for the
sound level at which the ripple stimulus was pre-
sented. Gray boxes indicate the tone stimulus du-
ration. Middle: poststimulus time histogram
(PSTH) across all pure-tone presentation sound
levels. Right: STA.
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power over either the STA or the MID1 single-dimensional
filter model.

Comparing the MID1 information values to the joint MID1
and MID2 information allows us to estimate the dimensionality
of the STRFs in the ICC and the cortex (Fig. 4C). If the joint
information is significantly greater than the MID1 information,
then more than one MID, or stimulus feature dimension, is
required to adequately describe ICC processing. Alternatively,
when the MID1 information is approximately equal to the joint
MID1 and MID2 information, then the second filter, MID2,
provides little additional information. For midbrain neurons,
the MID1 information was statistically indistinguishable from
the joint MID1 and MID2 information (Fig. 4C; P � 0.594,
rank sum test). By contrast, in the cortex, the MID1 informa-
tion was significantly less than the joint filter information (P �
0.001, rank sum test).

The ratio of the MID1 information to the joint MID1 and
MID2 information may be formed, and is termed the MID1
contribution (Fig. 4D). Across ICC neurons, MID1 accounted
for �80% of the information in a two-MID model; this
indicates that MID1 by itself may be quite adequate to describe
the spectrotemporal processing of ICC neurons. The MID1
contribution fell below 75% for only one neuron (Fig. 4D).
This result is in striking contrast to the much lower contribu-
tion values reported for AI (Atencio et al. 2008, 2009). Thus,
for all neurons we encountered, the processing in the ICC may
be accounted for by a single filter, while in the auditory cortex
more than one filter may be required.

Response measures. One of the goals of our study was to
determine the information processing of the different temporal
response types found in the ICC. To characterize the responses
of ICC neurons and their impact on STRF estimation, we
utilized two metrics from the DMR responses and one from
the pure-tone responses. The first DMR metric was firing rate
(the number of spikes divided by the duration of the DMR).
We encountered a broad range of firing rates, ranging up to 70
spikes/s over the duration of the DMR (Fig. 5A). These values
are consistent with previous definitions of sustained responses
in the auditory cortex: a firing rate �5 spikes/s during both the
first and the second half of the stimulus (Wang et al. 2005). The
second DMR metric was the RPI, which measures a neuron’s
temporal precision (see METHODS). RPIs were distributed over a
broad range (Fig. 5B; median � 0.114, m.a.d. � 0.049), which
was consonant with previously described midbrain properties
(Escabí et al. 2005).

The temporal evolution of pure-tone responses was evalu-
ated with the PTI. For purely phasic neurons the PTI is 0, while
for tonic responses the PTI is �0.5. The responses of ICC
neurons were distributed across a broad range of PTI values
(Fig. 5C; median � 0.426, m.a.d. � 0.048), and sustained
portions were frequent, accounting for a mean PTI near 0.5.

Firing rate and the RPI were hyperbolically related, with the
lowest firing rates correlated with high RPI values (Fig. 5D;
r � �0.428, P � 0.0005). The PTI was weakly correlated with
firing rate, indicating that sustained responses could be recov-
ered over a range of response strengths (Fig. 5E; r � 0.326,
P � 0.0097). Finally, the RPI was not correlated with the PTI;
thus tonic and phasic responses occurred across a wide range of
RPIs (Fig. 5F; r � �0.135, P � 0.295).

Information analysis for response metrics. After we charac-
terized the response types of ICC neurons we then related the

types to receptive field processing. The information results for
the STA and the MIDs generalized across response type in the
ICC. The STA sufficiency was high regardless of the firing rate
of ICC neurons, indicating that the STA information approxi-
mated that of MID1 across all response strengths (Fig. 6A; r �
�0.165, P � 0.352). Additionally, the STA sufficiency was
not affected by response precision; it was similar across dif-
ferent RPIs (Fig. 6B; r � 0.285, P � 0.103). Finally, the STA
sufficiency was independent of either phasic or tonic response
behavior (Fig. 6C; r � 0.053, P � 0.768).

The MID1 contribution measures the dimensionality of ICC
processing, and it achieved similarly high values for the three
response metrics. For firing rate, the MID1 contribution was
not dependent on the response strength of the neuron (Fig. 6B;
r � 0.231, P � 0.188). The response precision of the neuron
was also not correlated with model complexity (Fig. 6D; r �
0.049, P � 0.784). Finally, the PTI was moderately correlated
with the MID1 contribution (Fig. 6F; r � 0.484, P � 0.004).
However, for almost all neurons, no matter the PTI, the MID1
contribution was �75%. Therefore, regardless of response
strength or temporal response pattern, MID1 is an appropriate
model for the spectrotemporal processing of ICC neurons.

Information analysis in ICC and primary auditory cortex.
For ICC neurons, a single filter—combined with an appropri-
ate input/output nonlinearity—is sufficient to describe spectro-
temporal processing. One filter is appropriate regardless of the
response strength; it is also sufficient for phasic-to-tonic re-
sponse patterns. This finding contrasts with those from AI,
where multiple filters are present in granular (�600–1,100

Fig. 5. Phasic-tonic index (PTI), response precision index (RPI), and firing rate
of midbrain neurons. A: firing rate distribution for inferior colliculus (ICC)
neurons (median � 12.5, m.a.d. � 9.4). B: RPI distribution (median � 0.114,
m.a.d. � 0.049). C: PTI distribution (median � 0.426, m.a.d. � 0.048). D: RPI
vs. firing rate (r � �0.428, P � 0.0005, t-test). E: PTI vs. firing rate (r �
0.326, P � 0.0097, t-test). Dashed line indicates the PTI value for an ideally
tonic neuron (equal numbers of spikes throughout the stimulus duration).
F: PTI vs. RPI (r � �0.135, P � 0.295, t-test).
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�m) and nongranular layers (Atencio et al. 2009; Huang and
Winer 2000; Mitani et al. 1985; Rouiller et al. 1991; Winer
1984). To compare the midbrain and the cortex, we used
previously published data from AI (Atencio et al. 2008, 2009).
When we compared the STA sufficiency distributions, we
found that the midbrain population diverged significantly from
the cortical population. Compared with both cortical granular
and nongranular layers, the ICC population was significantly
shifted toward higher values [Fig. 7A; granular layers vs.
midbrain: P � 0.001, Kolmogorov-Smirnov (KS) test; non-
granular layers vs. midbrain: P � 0.001, KS test]. Thus a
single-filter characterization is sufficient for the ICC but not for
AI granular (thalamic input) and nongranular layers. In addi-
tion, midbrain STAs were better approximations to MID1s
than cortical STAs to MID1s (Fig. 7C; ICC: median � 89.7,
m.a.d. � 5.94; AI: median � 63.1, m.a.d. � 18.4; rank sum
test, P � 0.001).

Furthermore, the strength of the first MID, relative to a
combined first and second MID model, was substantially
different between midbrain and cortex (Fig. 7, B and D). The
midbrain had a stronger relative MID1 compared with either
granular or nongranular data (Fig. 7B; granular layers vs.
midbrain: P � 0.001, KS test; nongranular layers vs. midbrain:
P � 0.001, KS test). This indicates that the multiple-filter
model of AI is not passively received (“inherited”) from
midbrain processing. At the population level, the MID1 con-
tribution was much greater in the ICC than in AI (ICC: median �
92.0, m.a.d. � 4.58; AI: median � 62.4, m.a.d. � 20.4; rank
sum test, P � 0.001). Thus the second MID contributes much
more to information processing in AI than in the ICC. There-
fore, the number of stimulus dimensions needed to describe AI

neurons is substantially different from the number needed for
the midbrain.

DISCUSSION

A single stimulus filter dominates the spectrotemporal pro-
cessing in the auditory midbrain, whereas primary cortical
neurons in all cortical layers are best characterized by at least
two filters (Atencio et al. 2008, 2009). This implies that the
nature of receptive fields undergoes a fundamental transforma-
tion from subcortical to cortical stations. We established this
result in several ways.

First, for each ICC response type we encountered, whether
phasic or tonic, a single filter accounted for the overwhelming
majority of the conveyed stimulus information. Additionally,
the single-filter description held irrespective of the response
metric we employed, indicating that neither levels of firing rate
nor the degree of response precision conflicts with this result.
Therefore, the single-filter description likely generalizes across
the population of midbrain cells.

Second, the STA was an adequate descriptor of spectrotem-
poral ICC processing. For cells with only one relevant stimulus
dimension, and with appropriate stimuli, the STA and MID
descriptions should be similar. On the basis of filter similarity
and information, the ICC STA was nearly equivalent to MID1.
Thus the STA and MID1 correspond to the same stimulus
dimension that accounts for ICC responses. This is striking,
since the STA is a much simpler measure than an MID, both to
compute and to interpret. It implies that simple reverse corre-
lation may be used to obtain an unbiased receptive field
estimate for the ICC.

Third, the single feature selectivity of the ICC was con-
firmed by assessing the impact of a second MID. The MID
analysis produced a second MID for ICC neurons. However,
the filter shape was diffuse, and the information contributed by

Fig. 7. Midbrain and primary auditory cortex (AI) MID summary. A: cumu-
lative distribution for STA sufficiency. Compared with cortical granular (Gran)
and nongranular (NonGran) layers, midbrain STA information more closely
approximated the MID1 information [granular layers vs. midbrain: P � 0.001,
Kolmogorov-Smirnov (KS) test; nongranular layers vs. midbrain: P � 0.001,
KS test]. B: cumulative distribution for MID1 contribution. Compared with
cortex, in the midbrain MID1 accounted for a greater percentage of the joint
MID1 and MID2 information (granular layers vs. midbrain: P � 0.001, KS
test; nongranular layers vs. midbrain: P � 0.001, KS test). C: median STA
sufficiency values. Midbrain values were higher than cortical values (***P �
0.001, rank sum test). D: median MID1 contribution values. Midbrain values
were higher than those in cortex (***P � 0.001, rank sum test).

Fig. 6. Comparison between response metrics and information in the
midbrain. A: STA sufficiency compared with firing rate for midbrain cells.
C: STA sufficiency vs. RPI. E: STA sufficiency vs. PTI. For all metrics the
STA sufficiency was high. B: MID1 contribution vs. firing rate. D: MID1
contribution vs. RPI. F: MID1 contribution vs. PTI. For all metrics, MID1
information was highly similar to the joint MID1 and MID2 informa-
tion.
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MID2 was negligible. By contrast, in AI, second MIDs with
significant information contributions and reliable filter shapes
were encountered for the vast majority of neurons in both the
thalamic input/granular layers and the output/extragranular
layers. The existence of multiple filters in the cortical input
layers permits the possibility that the multiple-filter property is
generated before AI. However, since the number of filters
required to describe midbrain responses is different from that
in the cortical input layers, this eliminates the possibility that
cortical processing properties are inherited from collicular
neurons. The possibility of the emergence of multiple spectro-
temporal filters in thalamic neurons is still feasible.

Transformations in central auditory system. For sound pro-
cessing, there are relatively few established transformations
along the ascending central auditory pathway. The most widely
recognized processing change is the transition from a temporal
to a more rate-based coding scheme. For example, phase-
locking to the stimulus fine structure degrades as information
proceeds from lower to higher stations (Johnson 1980; Kuwada
et al. 1984; Liu et al. 2006; Lu et al. 2001; Winter and Palmer
1990). Also, the highest temporal modulation frequency to
which neurons may respond with a temporal code decreases
across the populations (Joris et al. 2004).

Our analyses established a further transformation that is
fundamentally different from those that are related to temporal
coding: The manner in which spectrotemporal information is
processed changes from midbrain to cortex. By showing that
the number of STRF components increases from the ICC to AI,
we have uncovered one of the first fundamental receptive field
transformations in the central auditory system: the emergence
of multidimensional receptive fields in the auditory forebrain.
The forebrain is composed of both the auditory cortex and the
auditory thalamus (medial geniculate body). We can only
speculate at this time on whether multidimensional receptive
fields will be found in the thalamus. We do note that the
thalamus, like the ICC, has a laminated structure (Morest
1965). Additionally, thalamic circuitry appears to be more
similar to that in the ICC than to the cortex, and the number of
cell types is also restricted relative to cortex (Winer 1992).
Given these admittedly cursory considerations, we expect that
thalamic receptive field processing will be more similar to that
in ICC than that in AI. Thus, if future work shows that the
thalamus can also be sufficiently described with a single filter,
then the multiple-filter model for AI neurons, which is present
in all cortical layers, would be an emergent feature of the
cortical circuit itself.

The change from single to multiple feature selectivity is
conceptually significant since it indicates that even though the
ICC is an obligatory processing station for auditory informa-
tion, further emergent changes take place in the forebrain. The
conclusiveness of previous characterizations of central pro-
cessing principles has often been hampered, since it has been
difficult to demonstrate and isolate truly emergent properties in
AI with simple stimuli. A creation of de novo receptive field
properties had not been described for AI. This contrasts with
primary visual cortex, where orientation selectivity and binoc-
ularity first emerge in the thalamic recipient layer 4, and
therefore experiments in that modality can be tailored to
understand the development, plasticity, and circuitry governing
the emergence of functional parameters. Since our findings in
the ICC implicate the auditory forebrain as the site of emergent

processing, experiments may now be performed to understand
how this processing may be enhanced, degraded, or modified in
accordance with approaches including network manipulations,
development, learning, and/or attention. Therefore, the func-
tion of the auditory cortical circuit may be examined, and
changes to the circuit itself may be correlated with specific
aspects of receptive field processing and with the implemen-
tation of task-specific algorithms.

Previous results. Spike-triggered analysis techniques have
been successfully applied to ICC neurons. Nonlinear receptive
field aspects have been revealed with uncorrelated noise and
DMR stimulation (Escabí and Schreiner 2002). STRFs have
also been moderately successful in linearly predicting midbrain
responses (Andoni et al. 2007; Lesica and Grothe 2008). In the
bat ICC, the STRF from spike-triggered averaging can predict
frequency modulation preferences (Andoni et al. 2007). The
structure of the STRF was found to be highly correlated with
frequency modulation direction selectivity. In the gerbil ICC, a
complex rain sound has been used to calculate the STRF
(Lesica and Grothe 2008). Here, the STRF was estimated with
ridge regression, which is a modified extension of the STA
(Lesica and Grothe 2008). The filter estimated from this
approach was relatively successful in predicting the temporal
spiking behavior of gerbil ICC cells. Finally, in the awake
rhesus monkey ICC, STRFs were used to predict responses to
noise and vocalizations (Versnel et al. 2009). Here STRFs were
estimated from static ripple stimuli. Like the DMR, static
ripple stimuli are characterized by two parameters, a temporal
and a spectral modulation frequency. Unlike the DMR, the two
parameters do not vary with time (Klein et al. 2000). The
predictive power of the rhesus monkey STRFs was probably
underestimated for two reasons. First, the predictions were not
compared to the inherent variance in the neural response (Hsu
et al. 2004; Sahani and Linden 2003). Second, the study did not
use a static nonlinearity, which is known to increase predictive
power (Sharpee et al. 2008). Therefore, our study provides a
context in which to view these successes, since our findings
indicate that, for some stimuli, ICC cells can be adequately
described with a single filter followed by a customized static
input/output nonlinearity.

Implications for receptive field analysis. We were able to
apply spike-triggered techniques to ICC neurons because neu-
ral systems satisfy fundamental systems analysis requirements.
Theoretically, a nonlinear dynamic system may be described
by a Volterra series if the system is nonchaotic, nonoscillatory,
and time-invariant and has finite memory (Boyd and Chua
1985; Marmarelis 2004; Westwick and Kearney 1998). Impor-
tantly, the Volterra series can be formulated in the linear-
nonlinear (LN) model configuration (Palm 1979). The LN
model, which is also termed a Wiener-Bose or parallel-cascade
model, is a bank of linear filters followed by a static nonlin-
earity (Korenberg 1991; Marmarelis 1997, 2004). The STA/
MID approach, with accompanying nonlinearities, falls under
the general framework of the LN model (Schwartz et al. 2006).
The only stimulus requirement for these models is that the
statistics of the stimulus be broad enough to effectively cover
the stimulus preferences of the neuron (Marmarelis and Mar-
marelis 1978; Marmarelis 2004). Appropriate techniques may
then be used to correct for stimulus correlations and to estimate
the proper number of filters (Sharpee et al. 2004). Hence, for
auditory neurons, we can calculate STRFs if the stimulus
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modulates the firing rate. Thus spike-triggered analyses can
also be used to characterize tonic neural responses. For a
dynamic stimulus, only when the firing rate does not modulate
in response to changing stimulus features will the STRF
procedure not work. However, in this case, the neuron’s
response is not informative. In short, if the response varies
when stimulus features vary, then judiciously applied spike-
triggered approaches may be useful.

Further considerations. Like every approach, the scope of
our results are necessarily constrained by the details and
assumptions of our methodology. In this regard there are
important issues to consider. First, we employed the DMR
stimulus because it contains temporal and spectral modula-
tions, which are important components of natural sounds.
Natural sounds may have other features that are not modeled
by the DMR, and thus calculating MIDs with naturalistic
stimuli may lead to moderately different results (David et al.
2009; Singh and Theunissen 2003). Second, how the DMR is
represented may be pertinent. Although the neurons them-
selves responded to the entire stimulus waveform, we esti-
mated filters with the spectrotemporal envelope. The stimulus
waveform fine structure is a richer representation than the
envelope. Previous work has shown that auditory cortical
neurons may indeed be sensitive to stimulus fine structure
(Elhilali et al. 2004). Sensitivity to fine temporal features may
be even more pronounced in the ICC, which has better tem-
poral resolution than auditory cortex (Joris et al. 2004). Thus
using a specific form of the spectrotemporal envelope may not
allow us to capture the complete processing of a neuron. Third,
the state of the animal may be a factor, since anesthesia, for
example, may decrease the number of tonic responses and
change inhibitory mechanisms (Astl et al. 1996; Lu et al. 2001;
Versnel et al. 2009). This would affect the nature of the STRFs
and nonlinearities, though not our ability to calculate them,
since in the present study we were able to calculate filters for
neurons that had tonic responses. Fourth, we presented the
DMR at one mean intensity, although the responses to the
DMR may change at different intensities. Earlier work showed
varying STRFs for differing intensities (Lesica and Grothe
2008). This effect may be partially mitigated in the case of the
DMR, since it covers a 40-dB dynamic range. Finally, further
work needs to ascertain the predictive power of a single MID.
Our present study cannot address this, since we did not present
multiple repetitions of a single stimulus segment (Sharpee
2007). The repeats are required since predictions need to be
evaluated relative to the inherent noise in the neural response
(Brenner et al. 2000; Hsu et al. 2004; Sahani and Linden 2003).

Conclusion. Multidimensional receptive fields emerge along
the auditory midbrain-to-forebrain pathway. To establish this,
we first analyzed the phasic-tonic nature of ICC responses and
verified that spike-triggered analyses were appropriate. The
information from the STA was similar to the MID1 informa-
tion, and the MID1 information was similar to the joint MID1
and MID2 information. These results generalized across all
temporal response types; thus, in the ICC, a single spectrotem-
poral filter may adequately describe acoustic processing. In
contrast, the auditory cortex requires a multifilter description.
Therefore, receptive field dimensionality increases from mid-
brain to cortex.
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