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Abstract

Spectral integration properties show topographical order in cat primary auditory cortex (AI). Along the iso-frequency
domain, regions with predominantly narrowly tuned (NT) neurons are segregated from regions with more broadly tuned
(BT) neurons, forming distinct processing modules. Despite their prominent spatial segregation, spectrotemporal processing
has not been compared for these regions. We identified these NT and BT regions with broad-band ripple stimuli and
characterized processing differences between them using both spectrotemporal receptive fields (STRFs) and nonlinear
stimulus/firing rate transformations. The durations of STRF excitatory and inhibitory subfields were shorter and the best
temporal modulation frequencies were higher for BT neurons than for NT neurons. For NT neurons, the bandwidth of
excitatory and inhibitory subfields was matched, whereas for BT neurons it was not. Phase locking and feature selectivity
were higher for NT neurons. Properties of the nonlinearities showed only slight differences across the bandwidth modules.
These results indicate fundamental differences in spectrotemporal preferences - and thus distinct physiological functions -
for neurons in BT and NT spectral integration modules. However, some global processing aspects, such as spectrotemporal
interactions and nonlinear input/output behavior, appear to be similar for both neuronal subgroups. The findings suggest
that spectral integration modules in AI differ in what specific stimulus aspects are processed, but they are similar in the
manner in which stimulus information is processed.
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Introduction

Auditory perception is mediated by functional networks which

operate at many scales of organization. At intermediate scales, in

the cortical column, spectrotemporal processing is systematically

related to layer [1,2,3]. However, evaluating networks at larger,

intra-areal scales is challenging, since this requires either knowing

preexisting network architecture or deriving topographic maps so

that connectivity may be related to functional processing. One

proxy for preexisting knowledge is to know that a physiological

parameter correlates with anatomical connectivity, which then

facilitates the evaluation of network function and the consequences

of behavioral or physiological changes and manipulations. Such

experimental approaches have been exploited in rodent somato-

sensory cortex for whisker barrels and in cat primary visual cortex

for orientation columns [4,5]. The primary auditory cortex (AI) of

the cat also contains an intra-areal network that may be exploited

for this purpose. Spectral tuning modules in the cat contain

different proportions of narrowly and broadly tuned neurons;

regions that contain more narrowly tuned (NT) neurons are

anatomically segregated from regions with higher proportions of

broadly tuned (BT) neurons [6,7,8]. Despite the prominence of

this larger scaled AI network, we understand little more than the

spectral integration properties of neurons within these spectral

tuning modules.

The narrowly and broadly tuned modules are the second most

consistently present spatial topography within cat AI [9]. The most

fundamental topography is for characteristic frequency (CF),

which varies smoothly across the anterior-posterior axis of AI.

Along the dorsal-ventral axis, contours have similar CFs and

varying spectral tuning [10,11]. Spectral tuning modules are larger

than the traditional column, since they extend over many

millimeters, covering CFs from ,5–20 kHz. AI also contains

other spatial representations of less uniformly represented acoustic

parameters, such as binaurality, threshold, latency, and intensity

tuning, though these do not appear to be related to repeatable,

observable ipsilateral network connectivity [12,13,14,15,16].

Cat AI contains three large-scale spectral integration regions

and one that is smaller. The three large tuning regions in AI are: a

ventral region, a central region, and a region just dorsal to the

central region. These regions are distinguished based on the

proportion of NT or BT tuned neurons, with no region completely

dominated by only one of the two types of tuning. Thus, ventral AI

(vBT), on average, reveals more broadly tuned (BT) cluster

responses [17]. Central AI (cNT) is occupied by neuron clusters

and single neurons with more narrow tuning (NT) [6,14,18]. And

the dorsal third of AI (dBT), adjacent to the central narrowly

tuned region, is inhabited by a higher proportion of clusters and

single neurons that are more broadly-tuned than in the central

region than in the central region [17,19]. Finally, careful, high
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resolution mapping often reveals a small NT region that is dorsal

to the three main tuning regions [6].

The current evidence strongly implies that the NT and BT

modules form distinct anatomical networks. Tracer studies showed

that the central and dorsal NT regions are anatomically linked [6];

they also showed that the central NT and dorsal BT regions

receive inputs from distinct regions in the thalamus [20]. Also,

local inhibitory circuits of the central NT module, identified by

labeling for the calcium-binding protein parvalbumin, have been

shown to remain restricted to this functional region [8]. Last, the

presence of multiple narrowly tuned regions is consistent with

single-neuron labeling results, which showed that the axons of

central AI neurons arborize after projecting over a distance that is

nearly the same as that between the central and dorsal narrowly

tuned regions [21]. Together, this establishes multiple lines of

evidence for NT and BT anatomical networks: multi-unit and

single-unit physiology, retrograde cortical labeling, single neuron

axon tracing, thalamic projection patterns, and the extent of

inhibitory circuits.

The NT and BT modules have been described using pure-tones,

though this does not adequately address spectrotemporal process-

ing. To more fully understand acoustic processing, analyses based

on broad-band sounds is required [22] and spectrotemporal

receptive fields (STRFs) and input/output nonlinearities need to

be estimated. The STRF describes the stimulus features that a

neuron responds to when challenged with a non-stationary broad-

band stimulus. The nonlinearity describes the output of the neuron

as a function of the similarity between the stimulus and the STRF,

and thus it may capture aspects such as gain, rectification, and

saturation. The STRF-nonlinearity model is a compact approach

to describing neural function in AI. In this report, we exploit the

spatial organization of spectral integration to compare the

spectrotemporal processing within AI spectral tuning modules.

Methods

This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol (AN086113-01B) was approved by the University of

California, San Francisco Committee for Animal Research. The

electrophysiological recording methods and stimulus design used

in this study were previously described in detail [1,23]. A brief

description follows.

Electrophysiology
Nine young adult cats with clean and otoscopically normal outer

and middle ears were sedated with an initial dose of ketamine

(22 mg/kg) and acepromazine (0.11 mg/kg), and then anesthe-

tized with pentobarbital sodium (Nembutal, 15–30 mg/kg) for the

surgical procedure. The animal’s temperature was maintained

with a thermostatic heating pad. Bupivicaine was applied to

incisions and pressure points. Surgery consisted of a tracheotomy,

reflection of the soft tissues of the scalp, craniotomy over AI, and

durotomy. After surgery, to maintain an areflexive state, the

animal received a continuous infusion of ketamine/diazepam (2–

5 mg/kg/hr ketamine, 0.2–0.5 mg/kg/hr diazepam in lactated

Ringer solution). All procedures were administered under a

protocol approved by the University of California, San Francisco

Committee for Animal Research.

With the animal placed inside a sound-shielded anechoic

chamber (IAC, Bronx, NY), stimuli were delivered via a closed

speaker system to the ear contralateral to the exposed cortex

(diaphragms from Stax, Japan). Extracellular recordings were

made using multi-channel silicon recording probes, which were

provided by the University of Michigan Center for Neural

Communication Technology [24]. The probes contained sixteen

linearly spaced recording channels, with each channel separated

by 150 mm. The contact size of each channel was 177 mm2.

Having the appropriate impedance for each channel is essential for

single-unit recording using the silicon probes. Each channel of the

probes had impedances from 2–3 MV.

To obtain single neuron responses, neural traces were bandpass

filtered between 600 and 6,000 Hz and were digitally recorded

with a Cheetah32 A/D system (Neuralynx, Bozeman, MT), at

sampling rates between 18,000 and 27,000 Hz. Stimulus-driven

neural activity was recorded for approximately 75 minutes at each

location. After each experiment, the traces were sorted off-line

with a Bayesian spike-sorting algorithm [25]. Most channels of the

probe yielded 1–2 well-isolated single units. For example

waveforms that may be obtained using this methodology, see

Fig. 1 in [26]. All recording locations were in AI, as verified

through initial multi-unit mapping and determined by the layout

of the tonotopic gradient and bandwidth modules on the crest of

the ectosylvian gyrus [9]. For each animal, a digital photo was

acquired that contained the posterior ectosylvian, and the anterior

ectosylvian sulci. The image was imported into Canvas software

(ACD Systems), and subsequent recording positions were marked

on the image during the experiment. Recordings were acquired

from regions along the dorsal-ventral extent of the 7–25 kHz

frequency range in AI [6,9].

Stimuli
All neurons were probed with one or two presentations of a 15

or 20 minute dynamic moving ripple stimulus. The ripple stimulus

was a temporally varying broadband sound (500–20,000 or

40,000 Hz) composed of approximately 50 sinusoidal carriers

per octave, each with randomized phase [27]. The carrier

magnitude was modulated by the spectrotemporal envelope. At

any given time, the envelope was defined by one spectral and one

temporal modulation rate. Spectral modulation rate is defined by

the number of spectral peaks per octave across the full bandwidth

of the carrier signal. Temporal modulations are defined as the

number of peaks per second. Both the spectral and temporal

modulation parameters varied randomly and independently over

time. Spectral modulation rate varied between 0 and 4 cycles per

octave. The temporal modulation rate varied between 240 Hz

(resulting in upward sweeps of spectral maxima) and 40 Hz

(downward sweep of spectral maxima). Both parameters were

statistically independent and unbiased within these ranges.

Maximum modulation depth of the spectrotemporal envelope

was 40 dB. The mean intensity was set 30–50 dB above the

average pure tone threshold in a penetration.

Analysis
Data analysis was carried out in MATLAB (Mathworks, Natick,

MA). For each neuron the reverse correlation method was used to

derive the spectrotemporal receptive field (STRF) for all neurons

included in the sample [28,29,30]. STRFs were thresholded so

that only significant features (p,0.01) were included in the

analysis [27].

Neuronal spectral and temporal modulation preferences were

derived by computing the two-dimensional Fourier transform of

each STRF. The FFT is a function of temporal (cycles/s) and

spectral modulation rate (cycles/octave). The magnitude of this

function was folded along the vertical midline (temporal

modulation frequency = 0) to obtain the Ripple Transfer Function

(RTF). Since the Fourier transform is sensitive to periodicities in

Modular Spectrotemporal Processing in AI
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the STRF, the RTF reflects the relationship of excitatory (ON)

and suppressive (OFF) STRF subfields. Thus, if the sole STRF

feature is an excitatory peak, the RTF will tend to be lowpass in

both the temporal and the spectral modulation domains. Strong

flanking suppression/inhibition in frequency and/or in time will

tend to produce RTFs that are bandpass in the spectral and/or

temporal domain.

RTFs were used to obtain modulation transfer functions

(MTFs). Summing the RTF along the spectral modulation axis

yields the temporal modulation transfer function (tMTF), and

summing along the temporal modulation axis yields the spectral

modulation transfer function (sMTF). MTFs were classified as

bandpass if, after identifying the peak in the MTF, values at lower

and higher modulation rates decreased by at least 3 dB. If there

was no such decrease for low modulation rates the MTF was

classified as lowpass. Highpass MTFs were not encountered. Best

modulation frequency for bandpass MTFs was the frequency

corresponding to the peak value in the MTF. For lowpass MTFs,

the best modulation frequency was defined as the average between

zero modulation frequency and the 3 dB high side cutoff. This

definition provides a value directly comparable to the estimate for

bandpass filters. MTF width for bandpass MTFs was defined as

the difference between the high and low 3 dB cutoff values, while

for lowpass MTFs the width was the difference between the high

side 3 dB cutoff rate and the zero modulation rate.

The independence of the spectral and temporal response

properties captured by the STRF, i.e. the spectral-temporal

separability, was determined by performing singular value

decomposition [3]. Using the decomposition, the separability

index was defined as SPI~s2
1

,X
i

s2
i , where s1 is the largest

singular value. The SPI, which ranges between 0 and 1, describes

how well the STRF may be described by a pair of 1D functions:

one a function of time and the other a function of frequency, with

values near 0 corresponding to an STRF for which time and

frequency may be dissociated.

Using previously described methodologies, we computed a

phase-locking index (PLI) for each neuron using the relation

PLI~ max (STRF ){ min (STRF )ð Þ
�

r
ffiffiffi
8
p� �

, where max(STRF)

and min(STRF) are the maximum and minimum values in the

STRF, and r is the average firing rate [27]. Dividing by r and the

square root of 8 allows the PLI to range from 0 (not phase locked)

to 1 (precisely phase locked). Here phase-locking refers to how well

the spikes align to different parts of the ripple stimulus. If the spikes

always align to ripple stimulus values that have large magnitudes,

then the PLI will be closer to 1, since the difference between the

maximum and minimum will be great. When spikes are not as

precisely aligned, the maximum in the STRF will decrease, and

thus the PLI will decrease in value.

To determine the stimulus selectivity of each neuron we

calculated a feature selectivity index (FSI) for each neuron

[27,31]. For each spike generated by the neuron, the ripple

envelope that preceded the spike was captured and correlated with

the neuron’s STRF. The similarity index, SI, is formally defined as

SI~

P
i

P
j

stim(i,j)STRF (i,j)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

P
j

stim(i,j)stim(i,j)
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i

P
j

STRF (i,j)STRF (i,j)
r

where stim and STRF are matrices that represent the stimulus

segment preceding a spike, and the receptive field of the neuron,

respectively, and i and j range over the number of rows and

columns in the STRF. The SI ranges between +1 and 21, and is a

measure of the spectrotemporal correlation between the stimulus

and the STRF.

A similarity index value was calculated for each action potential,

forming a SI probability distribution, p(SI), of the driven activity.

Using a spike train of similar length but from random spikes

[31,32] we calculated SIs from the neuron’s STRF and formed a

probability distribution, prand (SI), for a random selection of

stimulus segments. For each SI probability distribution the

cumulative distribution function was then calculated according to

P(SI)~

ðSI

{1

p(x)dx

The difference between the random and driven spike trains was

quantified by obtaining the areas, A and Arand, under each

cumulative distribution function, from which we then calculated

the FSI as

FSI~
Arand{A

Arand

FSI values vary between 0 and 1, where 0 corresponds to similar

distributions for Prand (SI) and P(SI), i.e., a neuron that responds

indiscriminately to stimulus segments, and 1 corresponds to a

neuron that is responsive to a very restricted and fixed range of

stimulus features.

For each STRF, we computed the nonlinear input/output

function that related the stimulus to the probability of spike

occurrence [33]. The following steps were used to calculate the

nonlinearities. (1) Each ripple stimulus segment, s, that elicited a

spike, was correlated with the STRF by projecting it onto the

STRF via the inner product z~s:STRF . These projections, or

stimulus-filter similarities, characterize the probability distribution

P(zjspike). (2) We then projected a large number of randomly-

selected stimulus segments onto the STRF, and formed the prior

stimulus distribution, P(z). (3) The mean and standard deviation

of P(z), m and s, were then calculated. (4) P(zjspike) and P(z)
were transformed to units of standard deviation by using

x~(z{m)=s, to obtain the distributions P(xjspike) and P(x).
The x values here are not similarity index values since the x values

are normalized differently. Because of the transformation, the

values of x are now in units of standard deviation (SD). (5) The

nonlinearity for the STRF was then computed as P(spikejx)~

P(spike)
P(xjspike)

P(x)
, where P(spike) is the average firing rate of

the neuron. Thus, the nonlinearity describes the likelihood of a

spike given the similarity between the STRF and the stimulus.

High x values indicate STRF-stimulus correlations that would not

be expected from a randomly spiking neuron, while values near 0

would be expected if the neuron fired indiscriminately. Thus, if

nonlinearity values increase as the x values increase, then greater

similarity between the STRF and the stimulus results in greater

firing rates.

Results

We studied the spectrotemporal processing properties of

neurons in different topographic regions of AI. We recorded from

neurons in the central narrowly tuned region of AI, and in regions

ventral and dorsal to this central region [6,9,14]. The majority of

characteristic frequencies (CFs) were between 7 and 25 kHz, a

range that shows the strongest spatial segregation of broadly and

narrowly tuned neurons along the iso-frequency domain [9]. To

Modular Spectrotemporal Processing in AI
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examine spectrotemporal processing, we recorded the responses of

AI neurons while presenting a dynamic ripple stimulus that was

approximately 40 dB SPL above the pure-tone threshold of each

neuron. We then estimated the spectrotemporal receptive field

(STRF) of each neuron by calculating the average spectrotemporal

stimulus envelope preceding an action potential (the spike-

triggered average, STA). In this report, we used the STRF as an

assay for spectrotemporal processing.

STRF Classification
We recorded from 1063 neurons and used the STRF to identify

NT and BT neurons. From the STRF, we computed the spectral

tuning, Q, by dividing the CF by the excitatory bandwidth of the

neuron (Q = Characteristic frequency/bandwidth = CF/BW). The

CF was identified as the peak in the excitatory portion of the

STRF, and the bandwidth was the width of the STRF when the

excitatory portion of the STRF was 10% of the maximum STRF

value. We classified a neuron as BT if the STRF-based Q value

was less than 1.5. A cell with a Q value above 3.5 was designated

as NT.

When we divided neurons into NT and BT classes, the

STRFs of each class diverged beyond that expected for mere

spectral bandwidth (Fig. 1A–D: BT STRFs; Fig. 1E–H: NT

STRFs). NT neurons had STRFs with diverse shapes, though

one consistent characteristic was a well-defined excitatory

subfield preceding an inhibitory subfield (Fig. 1E–H; excitatory

subfield: red; inhibitory subfield: blue). The excitatory subfield

usually had a shorter duration than the inhibitory subfield, and

the spectral bandwidth of the main excitatory subfield was

similar to the bandwidth for the inhibitory subfield. This was

not the case for BT neurons (Fig. 1A–D). Also in contrast to NT

neurons, most BT neurons had excitatory subfields with short

temporal durations. The inhibitory subfield of BT neurons was

of similar temporal duration to the excitatory one, though the

inhibitory bandwidth often did not match the excitatory

bandwidth.

Recording Locations
One of the most striking features of cat AI is the change in the

proportion of tuning types along the dorsal-ventral axis (Fig. 2A).

The presence of tuning types is not all-or-none; it means that there

are higher proportions of either NT or BT neurons in the main

regions of AI. We confirmed this using STRFs: neurons were

recorded across the dorsal-ventral extent of AI and then collated

across animals. We used a multi-step process to combine neurons

across animals. First, during each experiment, penetration sites

were marked on a digital image of the cortical surface. We then

used the image of AI to construct a line that extended from the tip

of the posterior ectosylvian sulcus (PES) to the tip of the anterior

ectosylvian sulcus (AES). Previous mapping studies have indicated

that this line is usually positioned near the ventral border of AI,

but not within AII [9]. We next constructed a line that was

orthogonal to the line connecting the tips of the sulci (see Fig. 2A

for a schematic). Last, we projected each recording site onto the

orthogonal line, allowing us to estimate the dorsal-ventral

recording position for each neuron.

Significant numbers of neurons were recorded throughout

AI, with the greatest yield from the central portion (Fig. 2B).

Despite the possible variability of AI relative to sulcal patterns

[10], we found that the mean local Q values unambiguously

varied across the dorsal-ventral axis, with the highest Q values

in the central portion of AI (Fig. 2C). The proportion of

narrowly and broadly tuned neurons also varied systematically,

and in accord with previous studies [6,9,17]: the central region

had the greatest proportion of NT neurons and almost no

broadly tuned neurons (Fig. 2D). Finally, we compared the

STRF Q values to Q40 values obtained with pure tones (Fig. 2E)

[9]. The STRF Q values were generally higher than the pure

tone Q40 values (slope of best fit line = 0.55, p,0.01, t-test),

indicating sharper tuning estimates for STRFs. The causes for

this differences are likely related to (a) different criteria used to

define the edge of a pure-tone tuning curve versus the

excitatory STRF portion, and (b) the stimulus-dependence of

receptive fields, in this case the narrowband nature of the pure

tones versus the broadband nature of the ripple stimuli. Despite

these differences, both pure tone and STRF analyses have now

revealed the dorsal-ventral variation of spectral tuning, further

indicating that the spectral integration modules are a funda-

mental feature of cat AI.

In the presentation that follows, NT neurons were grouped

together for statistical analysis if they were located in the

central narrowly tuned region of AI (Fig. 2B,C,D; 0.65 mm–

2.85 mm, N = 393). For broadly tuned neurons, we did not find

statistical differences among the various tested characteristics

when we compared neurons in ventral AI to those in dorsal AI.

Thus, all broadly tuned neurons were included in the BT class

(N = 123).

Figure 1. STRFs of broadly and narrowly tuned AI neurons. (A–
D) Broadly tuned neurons. (E–H) Narrowly tuned neurons. Q: quality
factor, which is the spectral tuning metric. FR: firing rate.
doi:10.1371/journal.pone.0031537.g001
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Response Strength
BT and NT neurons differed in their response strength to the

ripple stimulus, with BT neurons having a higher firing rate (Fig. 1,

insets). In response to the ripple stimulus, BT neuron discharge

rates often exceeded 15 spikes/s (BT firing rate (sp/s): medi-

an = 7.4, median absolute deviation (MAD) = 5.5). The firing rates

of NT neurons were significantly less (NT firing rate (sp/s):

median/MAD: 3.3/2.4, p,0.001, Rank-sum test).

Quantifying the Duration and Bandwidth of STRF
Subfields

Using the STRF, we quantified excitation and inhibition for all

neurons by estimating the bandwidth and duration of the

excitatory and inhibitory STRF subfields. We first decomposed

each STRF into its excitatory (firing rate increase, red subfields in

Fig. 3A,D) and inhibitory components (firing rate decrease, blue

subfields in Fig. 3B,E). We then performed singular value

decomposition on the components, and obtained profiles of

excitation and inhibition along the frequency and time axes

(Fig. 3B,C,E,F; profiles shown as marginal plots). For each STRF,

we estimated the duration and bandwidth of excitation and

inhibition by determining when the profile values decreased to

Figure 2. Recording location analysis. For each experiment,
recording locations were noted on a digital photo of AI. Locations
were estimated along the dorsal-ventral axis of AI by projecting the
recording position onto a line that was orthogonal to a line connecting
the tips of the anterior and posterior ectosylvian sulci. (A) Schematic of
auditory cortex and spectral tuning modules. Rectangle in AI represents
the region within AI where spectral tuning modules are present (dBT:
dorsal broadband region; cNT: central narrowband region; vBT: ventral
broadband region). Dorsal-ventral position of each electrode penetra-
tion was calculated by projecting recording sites onto the line that is
orthogonal to the line connecting the posterior ectosylvian (PES) and
anterior ectosylvian sulcus (AES). SSS: suprasylvian sulcus. AAF: anterior
auditory field; AII: secondary auditory field; P: posterior auditory field;
VP: Ventral-posterior auditory field. (B) Number of recorded neurons
along the dorsal-ventral axis. (C) Mean STRF Q values along the dorsal-
ventral axis. Tuning is sharpest in the central region of AI. (D) For
broadly tuned (BT) and narrowly tuned (NT) neurons, the proportion of
each along the dorsal-ventral axis. BT neurons had STRF Q values
, = 1.5, and NT neurons had Q values . = 3.5. Almost no BT neurons
are found within the central region of AI. (E) Relation between STRF Q
values and frequency response area (FRA) Q40 values. Dashed line
represents equality, and solid line represents the best fit (slope = 0.55,
p,0.01, t-test).
doi:10.1371/journal.pone.0031537.g002

Figure 3. Method for determining the temporal and spectral
extent of excitatory and inhibitory STRF subfields. Each column
represents one neuron (A–C: broadly tuned; D–F: narrowly tuned).
Singular value decomposition (SVD) was performed on either the
excitatory (B,E) or inhibitory subfield (C,F). Time and frequency 1D
marginals are shown above, and to the right, of each separable
component in B, C, E, F. The first separable component from the SVD
analysis was used to extract the subfield width at 10% of the peak value
(arrows).
doi:10.1371/journal.pone.0031537.g003

Modular Spectrotemporal Processing in AI
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10% of the peak value (indicated by arrows in Fig. 3B,C,E,F). The

width at the 10% value was then estimated to be the duration or

bandwidth.

Comparison of Excitatory and Inhibitory Subfield
Durations and Bandwidths

Over the entire population of neurons, STRF excitatory and

inhibitory subfields were correlated with respect to duration and

bandwidth. The duration of the excitatory subfield was strongly

correlated with the duration of the inhibitory subfield (Fig. 4A;

r = 0.639, p,0.001). The excitatory subfield duration, however,

was systematically shorter than the inhibitory subfield duration

(Fig. 4A: diagonal line represents identity relationship). The

bandwidths of excitatory and inhibitory STRF subfields were also

highly correlated (Fig. 4B; r = 0.768, p,0.001). We also found that

the bandwidths of excitatory and inhibitory subfields were

matched, indicating that, on average, changes in excitatory

bandwidth are accompanied by similar changes in inhibitory

bandwidth. Last, we found a weaker correlation between

excitatory subfield bandwidth and excitatory subfield duration

(Fig. 4C; r = 20.254, p,0.001). As the duration of the excitatory

subfield increased, the bandwidth of the excitatory subfield

decreased. This implies that neurons with the narrowest excitatory

tuning have longer-lasting excitation.

For BT neurons, the excitatory subfield duration was shorter

(BT median/MAD: 20.5/3.4 ms versus NT median/MAD: 26.0/

6.5 ms), indicating a lower range of excitatory duration compared

to NT neurons (Fig. 5A; p,0.001, KS-test). Additionally, BT

neurons had much shorter mean inhibitory subfield durations (BT

median/MAD: 18.0/4.5 ms versus NT median/MAD: 41.0/

18.5 ms), with BT neuron values significantly lower (Fig. 5B;

p,0.001, KS-test).

We also compared the excitatory and inhibitory subfields with

respect to the duration and bandwidth of each NT and BT

neuron. To determine if subfield durations were similar, we

divided the duration of the excitatory subfield by the duration of

the inhibitory subfield. Values near 1 indicate that the durations

were similar, while values less than 1 indicate that inhibition lasts

longer than excitation. For BT neurons, subfield durations were

closely matched (median/MAD = 1.07/0.21), while the inhibitory

subfields of NT neurons were longer than the excitatory subfield

(Fig. 5C; median/MAD = 0.70/0.26). Since the subfields of BT

neurons are shorter, this predicts that BT neurons will respond to

temporal modulations differently than NT neurons. Thus, BT and

NT neurons should differ in how they process the sequential

acoustic elements in complex sounds (see below).

We then examined if the bandwidth of STRF excitatory

subfields was similar to the bandwidth of inhibitory subfields. By

definition, BT and NT neurons had excitatory bandwidths that

were significantly different. This does not describe, however, if

within each class the bandwidth of excitatory and inhibitory

subfields are similar. By dividing the bandwidths of the two

subfields, we found that the mean ratios for BT neurons were

larger (Fig. 5D; BT median/MAD = 1.44/0.44; NT median/

MAD = 1.08/0.15). BT neurons often had excitatory bandwidths

2 to 3 times greater than inhibitory bandwidths. Since the

bandwidths of excitatory and inhibitory sequential subfields are

not matched, the frequency components of a broadband sound are

processed differentially by the receptive fields of BT neurons. This

suggests strong differences in the influence of short-term spectral

and temporal context on BT and NT neurons.

So far, the population analysis was based on neurons distributed

across the full depth of AI. Previously we have demonstrated that

cortical receptive fields may show some layer specificity within the

columnar organization [1], although the within-column variations

appeared smaller than variations across different functional sub-

regions in AI as observed in the thalamic input layers. To begin to

Figure 4. Comparison of temporal and spectral STRF subfield
duration and bandwidth. (A) Temporal inhibitory STRF subfield
duration versus temporal excitatory subfield duration. Inhibitory
duration was longer than excitatory duration (r = 0.639, p,0.001, t-
test). (B) Spectral STRF bandwidth for inhibitory versus excitatory
subfields. Bandwidth for excitation was generally similar to the
bandwidth for inhibition (r = 0.768, p,0.001, t-test). (C) Excitatory STRF
subfield bandwidth versus duration. Excitatory bandwidth decreases
slightly with increasing duration (r = 20.254, p,0.001, t-test).
doi:10.1371/journal.pone.0031537.g004
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disambiguate effects of laminar and regional variations we

repeated our analysis only for neurons from the thalamic input

layer 4 (Fig. 5 A–D, dashed lines). The effects obtained for the

whole population and layer 4 were largely similar for the ratios of

excitatory/inhibitory duration and bandwidth (Fig. 5C,D) and,

slightly less, for the inhibitory duration (Fig. 5B). This suggests that

local differences between cortical input and output layers do not

affect global differences between functional subregions, the basis of

the BT versus NT distinction. However, the excitatory duration

(Fig. 5A) showed no difference between NT and BT neurons in the

input layer in contrast to the whole population, indicating that

excitatory duration is affected by cortico-cortical interactions in

the output layers.

Modulation Processing of AI Neurons
We next examined how AI neurons process amplitude

variations within the temporal and spectral dimensions. A

neuron’s responses to amplitude variations may be described by

modulation transfer functions (MTFs). MTFs describe the

response as a function of the periodicity at which the variations

occur. We calculated MTFs in a multi-step process. First, we

calculated the 2D Fourier transform of each STRF (Fig. 6A,D).

The absolute value of the transform is the ripple transfer function

(RTF; Fig. 6B: BT neuron RTF; Fig. 6E: NT neuron RTF). The

RTF describes STRF energy as a function of modulation

frequency. For a NT neuron with inhibitory spectral sidebands,

the RTF has energy in a compact region of the modulation

parameter space (Fig. 6E). This implies that only a narrow range of

spectral and temporal modulation values excite the neuron. From

the RTFs we then obtained 1D temporal and spectral MTFs. The

MTFs were obtained by summing the RTF across the spectral and

temporal modulation axes, respectively, resulting in either the

temporal or spectral MTF (tMTF, black; sMTF, red; BT neuron

MTFs: Fig. 6C; NT neuron MTFs: Fig. 6F). The MTFs for a NT

neuron with spectral and temporal suppression are bandpass

(Fig. 6F; best temporal (bTMF) and best spectral (bSMF)

modulation frequencies near 10 cycles/second and 1 cycle/octave,

respectively).

BT neurons had MTFs that were fundamentally different from

NT neurons. BT neurons responded to spectral modulations

largely in a lowpass fashion (Fig. 6C), due to the lack of significant

inhibitory sidebands. Since BT neurons have shorter excitatory

and inhibitory STRF subfields, they followed faster temporal

amplitude modulations than NT neurons. Indeed, some neurons

followed quite fast temporal modulations, up to 30 cycles per

second, which is higher than the mean best temporal modulation

frequencies of AI neurons [32,34,35].

For all recorded neurons, we calculated the best temporal

(bTMF) and spectral (bSMF) modulation frequencies from each

MTF. bTMF was weakly related to bSMF (Fig. 7A; r = 20.271,

p,0.01). Consistent with previous work [32], the correlation

between the best modulation frequencies showed large scatter and

variability, with the majority of neurons having bTMFs from 8–

16 Hz, and bSMFs from 0.5–1 cyc/octave. In this main window of

modulation frequencies, there is little correlation between the two

parameters, indicating that the strong temporal and spectral

modulation processing tradeoffs seen in the auditory midbrain and

thalamus [32,36,37] are not strongly expressed in AI.

Analyzing the relationship between best modulation frequency

and spectral tuning revealed that bTMF trended toward a

Figure 5. Comparison between BT and NT neuron STRF subfield duration and bandwidth. (A) Cumulative distribution function (CDF) of
excitatory subfield durations. Solid lines represent total population data. Vertical lines indicate population medians. Dashed lines represent values
exclusively from layer 4 neurons (800–1100 mm cortical depth). NT neurons have significantly longer excitatory subfield durations (p,0.001, KS-test).
(B) CDF of inhibitory duration. BT neurons had shorter inhibitory subfields (p,0.001, KS-test). (C) CDF of the ratio of excitatory to inhibitory duration.
For BT neurons, the temporal duration of excitation is similar to the duration of inhibition (p,0.001, KS-test). (D) CDF of the ratio of excitatory to
inhibitory bandwidth. For BT neurons, excitatory bandwidth was greater than inhibitory bandwidth. For NT neurons, the bandwidths were similar
(p,0.001, KS-test).
doi:10.1371/journal.pone.0031537.g005
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negative correlation with spectral integration (Fig. 7B; r = 20.265,

p,0.001, t-test). bSMF was positively correlated with spectral

tuning (Fig. 7C; r = 0.848, p,0.001, t-test). One likely reason for

the latter is that the relative spacing of inhibitory spectral

sidebands changes depending on the bandwidth of the neuron.

As the bandwidth of a neuron increases, the highest spectral

modulation frequency the neuron can resolve decreases. Because

spectral modulation preference varies with spectral tuning, and

since there is already a spectral integration topography present in

AI, there may be other, perhaps more local, topographies of

spectrotemporal parameters within AI.

We next compared best modulation frequencies for BT and NT

neurons. We found that the bTMFs for BT neurons were

significantly higher (Fig. 8A; BT median/MAD = 17.3/4.0; NT

median/MAD = 10.5/3.2; p,0.001, Rank-sum test), indicative of

better temporal modulation processing (p,0.001, KS-test). In a

similar fashion, we also compared the bSMF values (Fig. 8B), and

found that NT neurons had significantly higher spectral

modulation values (BT median/MAD: 0.21/0.05 cyc/oct; NT

median/MAD = 1.19/0.27 cyc/oct). The bSMF result was

expected, however, since it follows from the classification scheme

we used to obtain the BT and NT neuron classes. Comparing

differences between the subpopulations based only on layer 4

neurons (Fig. 8A,B dashed lines) shows no clear layer-based effect.

The shape of the MTF also characterizes how AI neurons

respond to dynamic sounds. Though the bTMF describes the

preferred presentation rate of acoustic energy, it does not describe

how this information is processed. For BT neurons, 63% had

lowpass tMTFs, and 37% had bandpass. The higher amount of

Figure 6. Modulation processing analysis. (A) Broadly tuned
neuron STRF. (D) Narrowly tuned neuron STRF. (B,E) Ripple Transfer
Functions (RTFs) of the STRFs. (C,F) Temporal (black) and Spectral (red)
modulation transfer functions (MTFs) are obtained from the RTF by
summing across spectral or temporal modulation frequency, respectively.
(C) The BT neuron has bandpass tuning for temporal modulations, and
lowpass tuning for spectral modulations. (F) The NT neuron has bandpass
tuning for both temporal and spectral modulations.
doi:10.1371/journal.pone.0031537.g006

Figure 7. Best modulation frequency. (A) Best spectral modulation
frequency (bSMF) versus best temporal modulation frequency (bTMF).
bSMF is weakly correlated with bTMF (r = 20.271, p,0.01, t-test). (B)
bTMFs decrease as tuning sharpness increases (p = 20.265, p,0.001, t-
test). (C) bSMF is highly correlated with spectral tuning (r = 0.848,
p,0.001, t-test). Shaded areas in (B,C) indicate Broadly Tuned (BT) and
Narrowly Tuned (NT) neurons.
doi:10.1371/journal.pone.0031537.g007
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lowpass MTFs likely reflects the decrease in temporal following

inhibition that occurs for many BT neurons (see STRFs in

Fig. 1D,E). In contrast, NT neurons have more evenly distributed

tMTF shapes (56% bandpass, 44% lowpass), indicative of the

stronger sequential suppression in the central region of AI.

To determine if the proportions of MTF shapes were

significantly different, we performed a randomization test. For

the randomization test, the null hypothesis was that the

distribution of bandpass and lowpass MTFs comes from the same

population [38]. For this analysis, the BT and NT tMTF shape

distributions were combined into one distribution. We then

sampled this distribution with replacement. For each sample, we

randomly drew a number of samples that was equal to the number

of NT neurons. The proportion of bandpass tMTFs in this

random sample was calculated. We repeated this calculation for

each random draw, and compiled a distribution of proportions of

bandpass tMTFs. By combining the BT and NT shape

distributions, this procedure implicitly assumes that there are no

differences between BT and NT neurons. To determine

significance, the actual proportion of bandpass tMTFs for NT

neurons was compared to the compiled resampled distribution.

We found that the distributions were significantly different

(p = 0.0009, N = 10000 randomizations), indicating that a signif-

icantly higher proportion of NT neurons had bandpass tMTFs

compared to BT neurons.

The shape of spectral MTFs for BT and NT neurons also

differed. NT neurons had a higher proportion of bandpass sMTFs

(12%) compared to BT neurons (8.8%). The significant difference

in the proportions likely reflects the stronger sideband suppression

in the STRFs of NT neurons (p = 0.0493, randomization test).

Comparison of STRF Parameters and Spectral Tuning
To further evaluate the joint spectrotemporal processing,

spectral tuning was compared with firing rate, STRF separability,

phase locking to the ripple stimulus, and spectrotemporal feature

selectivity. Firing rate decreased with increasing Q, revealing that

more broadly tuned neurons have higher discharge rates (Fig. 9A;

r = 20.252, p,0.001, t-test; see also above). STRF separability

measures the degree to which time and frequency processing may

be dissociated in the STRF. If such a dissociation is possible, then

the STRF can be approximated by a product of two independent,

one-dimensional functions. Separability indices near 1 indicate

complete dissociation, while lower values indicate more intricate

interactions between time and frequency within the STRF. There

was no significant correlation between separability and Q (Fig. 9B;

r = 0.037, p = 0.227, t-test; BT median/MAD = 0.61/0.13, NT

median/MAD = 0.61/0.14, p.0.25, Rank-sum test). The phase

locking index quantifies how precisely the evoked spike responses

were time-locked to aspects of the ripple stimulus envelope [27].

Phase locking weakly increased with increasing tuning sharpness

(Fig. 9C; r = 0.116, p,0.001, t-test; BT median/MAD = 0.073/

0.029, NT median/MAD = 0.094/0.042, p,0.001, Rank-sum

test). The feature selectivity index indicates the variability of the

individual stimulus segments that elicit a spike and, thus,

contributes to the estimation of the STRF. Higher values indicate

greater stimulus selectivity [31,39]. Feature selectivity moderately

increased with sharpness of tuning (Fig. 9D; r = 0.200, p,0.001, t-

test; BT median/MAD = 0.06/0.02, NT median/MAD = 0.09/

0.04). This suggests that a greater range of stimulus segments

contribute to BT neuron responsiveness.

Input/Output Nonlinearities of AI neurons
The STRF by itself describes the stimulus features to which a

neuron is sensitive and how they may interact. It does not address

how the processing of the STRF translates into the firing rate of

the neuron. The STRF is one part of a linear-nonlinear (LN)

model for a neuron. In the LN framework, the linear filter (STRF)

processes stimuli, and the output of the filtering is sent to a

nonlinear gain function, or nonlinearity. The nonlinearity

describes how the firing rate of a neuron changes as the

projection, or similarity, between the stimulus and the STRF

changes (Fig. 10B,D,F,H). It contains no time dependence, and

may be arbitrarily nonlinear. Nonlinearities may be derived for

any neuron with an STRF.

To evaluate nonlinearities, we took two approaches, a non-

parametric and a parametric analysis. The first approach was non-

parametric, and here we estimated parameters directly from the

nonlinearity: the asymmetry index (ASI) and the skewness (Skew).

The structure of the nonlinearity may be described by the

asymmetry index (ASI). The ASI is defined as ASI = (R2L)/

(R+L), where R is the sum of the nonlinearity values for similarity

values greater than 0 (positive correlations between stimulus and

filter), and L is the sum for similarity values less than 0 (negative

correlations between stimulus and filter). The ASI varies between

21 and 1, with 1 corresponding to a nonlinearity where the firing

rate increases only when the stimulus is highly similar to the

STRF. The skewness of the nonlinearity describes the amount of

Figure 8. Best modulation frequencies of BT and NT AI
neurons. (A) Distribution of best temporal modulation frequencies
(bTMFs). Solid lines represent population data. Vertical lines indicate
population medians. Dashed lines represent values for neurons in layer
4 (800–1100 mm). BT neurons had higher bTMFs (p,0.001, KS-test). BT
neurons have significantly higher bTMFs. (B) Distribution of best
spectral modulation frequencies (bSMFs). NT neurons had higher bSMFs
(p,0.001, KS-test).
doi:10.1371/journal.pone.0031537.g008
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information in the tail, and thus it describes how quickly the

nonlinearity rises with increasing stimulus similarity. Skewness is

defined as
P

i

Yi{mNLð Þ3
�

Ns3
NL

� �
, where Yi are the nonlinearity

values, mNL is the mean of the nonlinearity, N is the number of

nonlinearity points, and sNL is the standard deviation of the

nonlinearity. When the firing rate gradually increases, the

skewness will be near 1 (Fig. 10D). When the firing rate increases

more rapidly, the skewness values are greater than 1 (Fig. 10F,H).

In the parametric approach, we used a function that has wide

theoretical and experimental support [40,41]. The function has

the following form:
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Here, A is a gain term, h is the threshold to response, and s is the

transition smoothness in the nonlinearity. erf(x) is the error function.

We fitted the function to nonlinearity values that exceeded the

average firing rate (dashed line in Fig. 10), which indicates

responsiveness to the ripple stimulus. For analysis, we only used

fits that gave normalized mean squared errors less than 0.1, and

coefficient of determination values greater than 0.9. h and s are the

most significant parameters in the fit: h determines the threshold,

while s determines how smooth the transition is when the responses

become greater than the average firing rate. When s is 0, the

function describes hard rectification. When s increases, the

transition in the nonlinearity smoothly varies (Fig. 11 shows

example functions for different values of h and s, as well as

examples of excellent fits of the function to data nonlinearities).

We analyzed the dependence of these nonlinearity parameters

on spectral tuning. The structure, or asymmetry, of the

nonlinearity was only weakly correlated with Q (Fig. 11A;

r = 0.107, p,0.001). Most ASIs were greater than 0.5, indicating

that STRF nonlinearities were highly asymmetrical across the

population of AI neurons, i.e., firing rate increased for positive

correlations of stimulus and filter. The skewness of the nonlinearity

was not significantly correlated with Q (Fig. 11B; r = 0.046,

p = 0.134). Therefore, the rate at which the nonlinearity rises is not

consistently related to filter bandwidth.

Are nonlinearity parameters related to the topography of

primary auditory cortex? Since BT and NT neurons form local,

spatial networks within AI, we are implicitly examining the spatial

relation of parameters within AI when we separate neurons into

these classes. When we parsed our data into BT and NT

categories, we found one difference and three similarities for

nonlinearity parameters. First, using the asymmetry index, we did

not find a significant difference between nonlinearity structure for

BT and NT classes (Fig. 12B; BT median/MAD: 0.79/0.14; NT

median/MAD: 0.81/0.13; KS-test, p = 0.246). Second, nonline-

arity skewness was different for the two spectral tuning classes

(Fig. 12D; BT median/MAD: 1.36/0.41; NT median/MAD:

1.49/0.48; KS-test, p = 0.072). Third, we found that the

parametric nonlinearity threshold, h, was similar for BT and NT

neurons (Fig. 12F; BT median/MAD: 1.57/0.88; NT median/

MAD: 1.49/0.72; KS-test, p = 0.39). Last, the response transition,

s, trended toward higher values for BT neurons, though this

difference was not statistically significant (Fig. 12H; BT median/

MAD: 0.77/0.55; NT median/MAD: 0.64/0.48; KS-test,

p = 0.081). Thus, to a first approximation, the manner in which

spikes are generated is similar for BT and NT neurons.

Additionally, both NT and BT neurons had equal proportions

of neurons with hard rectified responses. The lack of nonlinearity

Figure 9. STRF parameters versus spectral tuning (Q). (A) Firing rate is weakly correlated with Q (r = 20.252, p,0.001, t-test). (B) Phase locking
index is weakly correlated with Q (r = 0.116, p,0.001, t-test). (C) STRF separability is uncorrelated with Q (r = 0.037, p = 0.227, t-test). (D) Feature
selectivity index is weakly correlated with Q (r = 0.200, p,0.001, t-test). Shaded areas Broadly Tuned (BT) and Narrowly Tuned (NT) neurons.
doi:10.1371/journal.pone.0031537.g009
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differences between the whole populations was also evident for the

input layer neurons alone (Fig. 12 B,D,F,H; dashed lines).

Discussion

The main result of the current study is that processing modules

identified through measures of spectral integration in cat AI show

distinct differences with regard to other, stimulus-based response

aspects, including spectral and temporal modulation preferences,

the shape of modulation filters, envelope phase-locking ability, and

stimulus-feature selectivity. This suggests that stimulus content, or

what stimulus aspect is being processed, is strongly dependent on

local circuitry, and shows spatial organization. By contrast, the

nonlinearity capturing the input/output rules and the nature of

spectrotemporal interactions was found to be similar for NT and

BT neurons, suggesting that the manner in which stimulus

information is expressed in the firing rate is not related to the

spectral integration properties of AI neurons.

Our grouping of neurons was based on physiological criteria

along a spectral processing dimension. The grouping was

confirmed by analyzing the recording location of each neuron,

thereby revealing spatial variations in these physiological param-

eters (Fig. 2). The grouping based on broad-band stimulation

corresponded well with estimates using pure-tone tuning curves

[6,7,8,9], indicating that the observed phenomenon is a general

feature of auditory cortical processing and not specific to the global

stimulus design and statistics. This grouping, however, is only one

of many possible clustering methods that may be employed. For

example, STRFs in the birdsong system have been grouped along

spectrotemporal dimensions using various learning rules [42].

Additionally, alternative STRF clustering techniques may be

useful for speech analysis and recognition applications [43]. The

justification for our grouping, however, is fundamentally different

Figure 10. STRF and nonlinearity examples. Each row corre-
sponds to one neuron. (A) BT neuron STRF and (B) corresponding
nonlinearity. Dashed line: average firing rate of the neuron during the
ripple stimulus. Noted for each neuron are: nonlinearity asymmetry
index (ASI; asymmetry of nonlinearity) and nonlinearity skewness
(Skew). Firing rate increases as the projection of the stimulus onto the
STRF increases (or, equivalently, as the correlation, or similarity,
between the stimulus and the STRF increases). (C–H) additional STRF-
nonlinearity examples. Abscissas of nonlinearities are in units of
standard deviation (SD), where the value indicates the stimulus
similarity relative to a randomly selected stimulus pattern. Example: a
value of 3 SD represents a similarity value that would on average not be
expected for a randomly spiking neuron.
doi:10.1371/journal.pone.0031537.g010

Figure 11. Parametric analysis of STRF nonlinearities. (A)
Example parametric curves. In these examples the transition noise s
is set to 0, and the threshold h is varied. (B) Example parametric curves
with the threshold h held constant at 2.5 and the transition noise s
varied. (C–F) Example nonlinearities from data (black dots) and
corresponding parametric curve fits in gray. Threshold and transition
values for each curve fit are shown in insets as h and s.
doi:10.1371/journal.pone.0031537.g011
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from those approaches. Our motivation for clustering is based on

the covariation of anatomical and physiological properties in cat AI.

The connectivity pattern of NT regions within AI corresponded to

specific, physiologically defined criteria [6]. In this case, spectral

integration is used as an assay in which to address the processing

within anatomically definable and distinct subregions of cat AI.

Figure 12. Nonlinearity parameters versus spectral tuning (Q). (A) Nonlinearity asymmetry index (ASI) was weakly correlated with increasing
Q (r = 0.107, p,0.001, t-test). (B) BT and NT neurons had similar ASI distributions. Solid lines represent population data. Vertical lines indicate
population medians (BT median = 0.79, NT median = 0.81, p = 0.246, KS-test). Dashed lines represent values for neurons in layer 4 (800–1100 mm). (C)
Nonlinearity skewness was not significantly correlated with Q (r = 0.046, p = 0.134, t-test). (D) Skewness was significantly different for BT and NT
neurons (BT median = 1.36, NT median = 1.49, p = 0.072, KS-test). (E) Nonlinearity threshold, h, was not correlated with Q (r = 0.037, p = 0.31, t-test). (F)
Threshold was similar for BT and NT neurons (BT median = 1.57, NT median = 1.49, p = 0.392, KS-test). (G) Nonlinearity transition noise, s, was not
correlated with Q (r = 20.055, p,0.12, t-test). (H) Nonlinearity transition was similar for BT and NT neurons (BT median = 0.77, NT median = 0.64,
p = 0.081, KS-test).
doi:10.1371/journal.pone.0031537.g012
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Spectrotemporal processing
Our goal was to identify spectral-temporal processing

differences, based on STRFs, between functional circuits

dominated by either BT or NT neurons. We exploited the

structure of AI by recording within the central narrowly tuned

region of AI, and in regions dorsal and ventral to this central

region. Previous work has shown that broadly tuned single units

are found more commonly in the AI region dorsal, but less so

ventral, to the central narrowly tuned region [17]. This

physiological boundary was helpful in localizing the topographic

location of BT neurons. By using multi-channel recording probes

and dynamic moving ripple stimuli, we computed STRFs. The

STRF appears to represent the dominant response mode for any

neuron, regardless of the complexity of the model [3,33]. Thus,

parameters from the STRFs of BT and NT neurons may be

profitably compared (see summary in Table 1). The firing rates

of BT neurons were higher than those of NT neurons, possibly

due to the larger spectral integration window and shorter time

constants of BT neurons. NT neurons had a higher degree of

feature selectivity, or stimulus preference, than BT neurons. Best

temporal and spectral modulation frequencies covaried with

spectral tuning. In contrast to a previous report using pure-tone

tuning estimates, we found that spectral tuning derived from

broad-band stimuli is proportional to preferred spectral modu-

lation frequency [44].

The differences in modulation processing for NT and BT

neurons point to two possible topographic organizations in AI.

First, since best temporal modulation frequency varies with

spectral tuning, and spectral tuning displays a topographic

organization, it is likely that high and low temporal modulation

preference also shows some spatial segregation in AI. Previous

studies provided preliminary evidence for this implication,

although the relation of spatially non-homogeneous response

distributions to single unit responses was not quantified [45,46].

Our results indicate the possible existence, though not the

strength, of spatial segregation of preferred temporal modulation

frequencies. However, this organization of temporal information

is not likely to take the form of a map given the narrow overall

range and fairly low selectivity of temporal tuning. We also found

that best spectral modulation frequencies, as derived from the

STRFs, was highly correlated with spectral integration width.

This provides further evidence that a spatial segregation of

spectral modulation preferences coexists with a spectral decom-

position domain – the tonotopic axis - in AI [47]. Since spectral

tuning and spectral modulation are highly correlated and span a

fairly broad parameter range, we expect at least a rudimentary

map of spectral modulation in AI. Overall, the findings support

the notion that AI modules specialize in processing either

narrowband, slowly changing or broadband, more quickly

changing stimuli.

Input/Output Nonlinearities
The nonlinear input/output functions for NT and BT neurons

were strikingly similar, despite the large difference in preferences

for spectral and/or temporal stimulus parameters. The nonline-

arity describes how the spectrotemporal processing of a neuron is

translated into an output firing rate. That the structure of the

nonlinearities, including asymmetry and skewness, was not

significantly different indicates that the spectral integration

modules translate processing to output in similar ways across AI

circuits. Additionally, the similar nonlinearity thresholds between

the neuronal groups indicate that the operating point of AI

neurons is independent of stimulus content or potential local

circuit differences. The distribution of thresholds was centered at

approximately 1.5 SD (Fig. 12). This value represents the strength

of the similarity between stimulus and filter that is required to

drive a neuron to spike. Since the value is shifted away from 0 SD,

it implies that the stimulus-filter similarity must be removed from

the mean, stochastic similarity by a significant amount for

discernible firing rate responses to ensue. This process, of gating

or suppressing responses until significant stimulus similarity is

achieved, is appropriate for providing stimulus selectivity,

eliminating spurious matches from noise, and enhancing the

ability to detect signals in masking conditions. The value of 1.5 SD

is higher than that reported for visual cortex by Ringach and

Malone (2007) [48], from which we appropriated the parametric

approach. Further, the nonlinearity transition smoothness in AI is

approximately 0.7 SDs, similar to that in visual cortex. This would

imply that although the spiking response transition may be similar

across the different sensory modalities, auditory cortical processing

is more specialized to emphasize large signal deviations from

random stimulus-filter matches, while suppressing those that do

not reach appropriate levels of salience.

Connectivity
The connection patterns between spectral tuning modules are

most similar to those in visual cortex for orientation tuning [49].

Tracer injections into regions sensitive to orientations in V1 also

revealed patchy labeling more than 1.0 mm from the injection site,

showing that local functional networks are present with many of

the same characteristics as those in AI [50]. Additionally, V1 cross-

correlation studies showed that these regions are functionally

connected [5]. Though the patchy labeling in AI and V1 is similar,

studies have not described the feature selectivity and temporal

response characteristics between connected regions in VI. Thus,

we do not know if complex stimulus processing is similar in these

two systems.

Table 1. Receptive field parameters of Narrowly and Broadly
Tuned AI neurons.

Narrowly
Tuned

Broadly
Tuned

Firing Rate (sp/s) 3.3 (2.4) S 7.4 (5.5)

Excitatory Duration (ms) 26.0 (6.5) S 20.5 (3.4)

Inhibitory Duration (ms) 41.0 (18.5) S 18.0 (4.5)

Best Temporal Modulation Frequency
(cyc/s)

10.5 (3.2) S 17.3 (4.0)

Best Spectral Modulation Frequency
(cyc/oct)

1.19 (0.27) S 0.21 (0.05)

% Bandpass tMTFs 56 S 37

% Bandpass sMTFs 12 S 9

Phase Locking Index 0.094 (0.042) S 0.073 (0.029)

STRF Separability 0.612 (0.136) NS 0.612 (0.129)

Feature Selectivity Index 0.090 (0.041) S 0.058 (0.024)

Nonlinearity Asymmetry Index 0.81 (0.13) NS 0.79 (0.14)

Nonlinearity Skewness 1.49 (0.48) NS 1.36 (0.41)

Nonlinearity Threshold, h (SD) 1.49 (0.72) NS 1.57 (0.89)

Nonlinearity Transition, s (SD) 0.64 (0.48) NS 0.77 (0.55)

Values represent population medians (median absolute deviations, when
applicable, in parentheses). S = significantly different. NS = not significantly
different.
doi:10.1371/journal.pone.0031537.t001
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Future work and implications
Besides AI, other cortical fields, especially the anterior auditory

field in the cat, also show bandwidth modules [51]. However, the

modules in these fields are smaller than in AI and their location

within the tonotopic map is more variable. Other species such as

squirrel monkey and owl monkey, also exhibit local clusters of BT

and NT neurons in AI, though again their location and extent is

more variable than in cat AI [17,52,53]. This might indicate that

an organization principle based on spectral integration could be

widespread in mammalian core areas, though evidence for spectral

integration modules in some other species is either weak (rat; [54])

or absent (ferret; [55]).

Our study suggests several directions for future work. Specifically,

we need to examine how STRFs in the spectral integration modules

vary with layer. Previous studies have indicated clear layer

differences [1,3], although their relationship to modular organiza-

tion and inter-module differences is still unresolved. Additionally,

since multiple NT and BT modules exist in AI, we need to examine

how the connectivity between similar modules contributes to

spectrotemporal processing. Thus, while anatomical studies showed

that there are at least two subregions related to spectral tuning, our

work combined all neurons according to spectral tuning, regardless

of anatomical location. To further dissect the function of these

networks in AI, we need to determine, for example, how the

processing in one narrowly tuned region affects the other. The

spatial resolution of the experiments required for this analysis would

be challenging though approachable.

Since NT and BT neurons exhibit fundamental receptive field

differences, it is also probable that the spectral integration modules

are members of separate functional streams in AI [56,57]. Here,

the concept of streams is based on anatomical and physiological

evidence and not on a conceptual picture of auditory perception.

In the latter case, the idea of functional streams is related to the

processing of sound identification and sound location, which are

perceptual entities without a well-understood biological basis

[58,59]. Indeed, sound identification has been formulated as either

pitch perception or complex sound or object identity, both of

which are not well understood at the single neuron level. Further,

a topographic map of auditory space in AI has not yet been

identified, and thus location information may be distributed

throughout auditory cortex [60,61,62]. In the present study, we

identified spectral integration streams from single neuron STRF

properties that are related to anatomical differences. To determine

if these streams are fundamental to auditory processing, they need

to be traced from AI to later fields, such as the posterior or ventral-

posterior auditory fields [63,64]. It is likely that the segregated NT

and BT information in AI is also distributed differently at the next

stage of the auditory cortex hierarchy, where it may be processed

and combined to subserve specific behavioral demands. That

spectral integration information is segregated, in AI and in other

fields [51], is consistent with the highly topographic projection

patterns between all auditory cortical fields [65].

Our results have implications for studies of forward masking

and signal detection in noise in AI [66,67]. With regard to forward

masking, since the excitatory and inhibitory subfields of NT and

BT neurons differ, it is likely that masking will also vary between

the different modules in AI. The central region of AI would be

expected to show a longer time course of forward masking due to

the greater duration of inhibition in NT STRFs [67]. Alterna-

tively, BT neurons are expected to display an increased proclivity

to recover from the effects of sequential acoustic stimulation.

Further, since the bandwidths of the excitatory and inhibitory

subfields are not matched for BT neurons, the frequency of the

masker will also be differentially represented in the responses of

BT neurons [68]. Thus, the NT and BT networks should exhibit

clear differences when classical stimulation protocols are applied.

With regard to signal detection in noise, our results imply that

the different bandwidth modules serve different functions. The

central narrowly tuned region, due to the prevalence of sharply

tuned filters, is more likely to be involved in signal reconstruction

when stimuli are embedded in noise [69]. The necessity of sharply

tuned filters for detecting signals in noise is reflected in the

correlation between signal detection and spectral ripple processing

in normal and hearing impaired subjects [70,71,72,73]. High

spectral modulation following abilities correspond to increased

abilities in detecting speech in background noise. This is

accomplished through the narrower tuning of auditory filters. A

direct test of this phenomenon would involve behavioral

performance of cats before and after inactivating the central NT

region. We expect that signal detection thresholds will rise when

the NT region is inactivated.

We conclude by noting that our approach employed multi-

channel neuronal recordings combined with dynamic stimulation,

allowing us to reconstruct complete spectrotemporal STRFs for

large populations of neurons in AI spectral tuning modules. In the

future, this approach can be adapted to analyze neurons using

information theoretic approaches that may reveal additional

spectrotemporal dimensions that contribute to the response

behavior of cortical neurons [33]. These can then help determine

the temporal precision of groups of neurons, or to determine the

stimulus dimensions, and accompanying nonlinearities, that best

describe a neuron’s spiking response [74,75].
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